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By simply noting facts, we can never succeed in establishing a 
science. Pile up facts or observations as we may, we shall be none 
the wiser.

— Claude Bernard, An Introduction to the Study of 
Experimental Medicine, 1865 

Introduction
We are experiencing unprecedented growth in the amount of bio-
logical and medical information collected from human popula-
tions. Large prospective cohorts, such as the UK Biobank (1), the 
All of Us Research Program (2), and the China Kadoorie Biobank 
(3), are generating increasingly broad and detailed phenotyp-
ic descriptions of health trajectories for millions of individuals. 
Overall, initiatives in more than 30 countries have established 
more than 60 cohorts, each enrolling at least 100,000 individ-
uals, collectively projected to include as many as 36 million par-
ticipants (4). For a typical participant, a comprehensive picture 
of their physical state is provided by fine-grained data collected 
across various biological domains, including genetics, biomarker 
profiling, and biomedical imaging. Data from personal electron-
ic devices are harvested continuously to capture physical activity, 
dietary habits, and social interactions. Streams of biological data 
are ultimately integrated with medical histories, made available 
by the rising adoption of electronic health records, to create com-
plex models predictive of medical outcomes (5).

Perhaps not surprisingly, the rapid growth in health and 
genetic data has led to an explosion in the number of observations 
connecting physiological traits and diseases to genetic variants 
that may demark candidate targets for therapeutic intervention 
(Table 1). This increase in targets has been driven, at least par-
tially, by widespread genome-wide association studies (GWAS) 
that measure statistical relationships between genetic and pheno-
typic variation among individuals in a population (6). GWAS and 
other analytical methods, applied to larger and larger data sets, 
have uncovered more and more genetic variants with smaller and 
smaller phenotypic contributions, and have informed our appreci-
ation of the genetic complexity of human disease (6).

However, our ability to uncover genetic disease associations 
has far outpaced our ability to understand them and, even more 
so, to act on them. It is abundantly clear that only a small fraction 
of these associations can be functionally tested, and if we are to 
use these genetically inspired hypotheses for drug development 
and clinical testing, the list will need to be prioritized so as to avoid 
increasing the rates of failure in clinical trials.

Indeed, failures in clinical trials are far more frequent than 
successes. Among drugs entering clinical development, only 
about 10% will ultimately pass the stringent regulatory require-
ments necessary for a new-drug approval (7). The few successful 
trials bear the expense of all the failed ones, leading to the ever- 
increasing financial cost of drug development (8).

As the accumulation of human population data and the result-
ing gene-disease associations continues to increase, a question 
becomes central to the future of drug development: how can we 
mitigate the costs and improve on the success rate of clinical tri-
als? Among the many strategies to tackle this question, a funda-
mental one is to reduce the number of candidate targets before 
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On the other hand, many traits and diseases are highly polygenic 
(Figure 1C). The complex gene and protein interactions that likely 
underlie pleiotropy and polygenicity are such that therapeutical-
ly intervening on a single gene-trait link without perturbing other 
neighboring connections is unlikely. Moreover, intervention on 
any significant fraction of these connections, aiming to alleviate 
a reasonable portion of human diseases, also stands as an intrac-
table problem because of the sheer number of clinical trials that 
would be required.

Despite recent progress in identifying variant-trait associa-
tions, there is rarely a direct path from a statistically significant 
variant-trait association to a testable therapeutic hypothesis, pos-
ing a major challenge for translational applications. Common vari-
ants, which drive a substantial portion of the heritability of com-
plex traits (16), can occur in haplotypes, i.e., large chromosomal 
regions that tend to be inherited together. The non-independent 
segregation of variants within haplotypes, known as linkage dis-
equilibrium (LD), makes it difficult to identify the causal vari-
ant(s) and thereby the mechanisms driving the association. More-
over, disease-associated loci are frequently found in noncoding 
genomic regions (17). As our current understanding of the regu-
latory landscape of the genome is incomplete, we often cannot 
infer directly the underlying gene(s) or other intermediate trait(s) 
that mediate the observed genetic association. Such knowledge is 
critical to generate clear hypotheses that are testable in a clinical 
setting. By prioritizing the collection of intermediate phenotypes 
— comprehensive molecular and physiological readouts — along 
with the development of advanced analytical methods that incor-
porate known regulatory features of the genome, it may neverthe-
less be possible to identify candidate targets with clear hypotheses 
that can be validated through carefully designed functional stud-
ies and clinical experiments.

Refining and replicating statistical associations
One of the biggest operational challenges in the analysis of large 
cohorts is replication of findings (18). This is a particularly diffi-
cult problem for associations with small effect sizes, as the ability 
to replicate a study depends on the existence of similarly sized or 
larger cohorts with equivalent phenotypic measurements. Compu-
tational strategies such as cross-validation (e.g., splitting a cohort 
into training and validation sets) can be used, but at the cost of 
decreasing power to detect novel associations. Within-cohort rep-

they reach the clinical stage and to enrich them for the most 
promising hypotheses. Here we highlight four complementary 
avenues to achieve this goal. First, large and diverse cohorts pro-
vide greater power for discovery and fine mapping of likely caus-
al variants, refining potential hypotheses of the effects of genetic 
variants. Second, the acquisition of intermediate phenotypes, 
bridging genetic variants and clinical manifestations, enriches 
our understanding of disease etiology and informs the design 
of more rational therapeutic strategies. Third, the development 
of more accurate and interpretable statistical approaches, espe-
cially those integrating orthogonal data types, helps prioritize 
targets and eliminates the least promising ones in silico. Finally, 
testing candidate interventions using deep and perturbed phe-
notyping in relatively small studies (i.e., experimental medicine) 
helps validate hypotheses, refine selection of patients and their 
appropriate dosages, and reduce the probability of failure at later 
clinical stages. The ability to move from hypotheses generated in 
large data sets to validation, integration, and hypothesis testing 
in small numbers holds the promise of a more efficient approach 
to drug development.

Genetically inspired target space
Many diseases arise from a complex interplay between genetics, 
environment, and time-dependent interactions between the two. 
Although heritability estimates are highly trait specific, most stud-
ies report some heritable component (9), suggesting that genetic 
studies may be useful for understanding pathophysiology and pos-
sibly identifying candidate targets for clinical development.

Genetic studies using pedigree- and linkage-based approach-
es (10, 11) have proved very effective for identifying genetic 
associations with Mendelian disorders (12). More recently, study 
designs (13, 14) enabled by inexpensive genotyping have mapped 
associations between genetic variants and thousands of diseases 
and quantitative traits (15). Driven by the growing size of sam-
pled human populations and the diversity of measured pheno-
typic traits, as many as 32,000 gene-disease associations have 
been mapped so far (Table 1), and many more are expected in 
the near future.

An overview of all gene-trait connections discovered to date 
reveals a complex picture (Figure 1A). On one hand, many genes 
exhibit a high degree of pleiotropy and appear to be associated 
with many seemingly unrelated traits and diseases (Figure 1B). 

Table 1. Summary statistics of known gene-disease associations as reported in various database collections

Database Unique variants Unique genes Unique diseases or traits Gene-trait pairs
ClinVar (MedGen subset) 484,322 7973 9825 32,633
ClinVar (likely pathogenic or pathogenic) 104,568 4295 16,809 31,856
ClinVar (OMIM subset) 225,247 4604 6452 8847
NHGRI/EMBL-EBI GWAS (P < 10–9) 23,903 6842 1264 20,251
DisGeNET (curated) 89,998 11,913 7856 42,267
DisGeNET (curated diseases only) 64,010 8637 6162 22,112
HGMD 256,070 10,914 – –

ClinVar (85), National Human Genome Research Institute (NHGRI)/European Molecular Biology Laboratory–European Bioinformatics Institute (EMBL-EBI) 
GWAS Catalog (15), Human Gene Mutation Database (HGMD) (86), DisGeNET (87), accessed in June 2019.
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data in patients, cell cultures, and laboratory animals, along with 
intense analytical labor needed for interpretation. Recent techno-
logical advancements have facilitated data collection across vari-
ous levels of human biology and have provided us with rich data 
sets describing the molecular, biomarker, and physiological states 
of numerous cells, tissues, and organs. The comprehensive col-
lection of such multilayer phenotypic data is often referred to as 
“deep phenotyping.”

At the molecular level, global initiatives, such as ENCODE 
(24), NIH Roadmap Epigenomics (25), BLUEPRINT (26), and 
GTEx (27), have quantified DNA methylation, chromatin accessi-
bility, and gene regulation across a myriad of tissues and cell types 
in the human body. Additionally, efforts have begun to profile tis-
sues at the single-cell level in normal conditions (28), as well as 
various developmental (29) and environmental contexts (30).

At the biomarker level, it is now possible to apply metabolom-
ic, lipidomic, and proteomic analyses to large cohorts and acquire 
a comprehensive catalog of molecular species found in biofluids 
(31–35) and the microbiome (36). These multi-omics techniques 
gather data in a nontargeted manner to capture a large fraction 
of the biochemical space, including known as well as unknown 
molecular entities. Unbiased longitudinal measurements of bio-
markers, collected before and after disease manifestation, can be 
instrumental for identifying potential causal mechanisms of dis-
ease pathology and have a considerable impact on the results of 
clinical testing: a recent analysis suggests that the success rate of 
clinical trials can be doubled by inclusion of at least one biomarker 
in patient selection (37).

At the physiological level, radiological imaging techniques 
are starting to provide noninvasive, high-resolution anatomical 
and functional information across all aspects of human physiolo-
gy. Efforts to link brain imaging data to genetic and outcome data 
have already yielded new biological insights (38, 39). In addition, 
passive data collection from wearable devices allows for physio-
logical monitoring at high temporal resolution (40).

lication cannot address biases present in that cohort (e.g., access 
to health care, prevalence of smoking), as every random subset of 
the cohort used in cross-validations suffers from the same bias.

Genetic association studies have historically focused on White 
populations; however, recognition that diverse backgrounds can 
improve discovery and fine mapping (19) has led to efforts to 
study more diverse populations and recruit participants of diverse 
genetic backgrounds in biobank cohorts (20, 21). In addition, rare 
variants are more likely to be population specific (19), meaning 
that diverse cohorts will also improve power for discovery of new 
targets. While most of the observed variation in effect size across 
populations can be explained by low power, allele frequency dif-
ferences, or differences in LD structure (22), we cannot rule out 
the possibility that some variants may have effect sizes that vary 
between populations (23), pointing to a genetic effect that may be 
specific to a particular environment.

Even with biobank-scale primary analysis in diverse popula-
tions, replication in independent cohorts will remain an import-
ant tool to strengthen true gene-disease associations and weaken 
false ones (18). Representatives of the 60 human cohorts with the 
largest number of worldwide participants have formed the Inter-
national 100K Cohorts Consortium (4), whose primary mission 
is to facilitate exchange of knowledge and best practices and to 
devise a strategy for sharing data.

However, even when replicated, genetic evidence alone is 
insufficient to provide a clear path to intervention. Such a path 
typically requires a more detailed understanding of the molecular 
pathways that lead to disease development and relies in large part 
on deeper phenotypic profiling of the relevant populations.

Deep phenotyping
Our ability to intervene on a putative target is greatly assisted 
by a molecular understanding of disease pathogenesis and pro-
gression. Gaining such an understanding is a difficult task, as it 
requires collection of longitudinal biochemical and physiological 

Figure 1. The polygenic and pleiotropic space of GWAS associations. The complexity of the gene-trait association network hinders the development of 
targeted interventions. (A) A representative network derived from the National Human Genome Research Institute (NHGRI)/European Molecular Biology 
Laboratory–European Bioinformatics Institute (EMBL-EBI) GWAS Catalog shows 6348 associations between 2939 genes and 650 traits (15). (B) Pleiotropic 
genes show associations with multiple phenotypic traits. (C) Polygenic traits are affected by multiple genes.
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To address this challenge, a number of statistical approaches 
have been developed (44–46). These approaches, cumulatively 
referred to as mediation analyses, focus on the identification of 
intermediate phenotypes (e.g., biomarker levels in plasma) that 
might explain the association between an exposure (e.g., drug 
treatment) and an outcome (e.g., disease). The identification of 
such phenotypes is often critical for uncovering molecular mecha-
nisms and provides considerable assistance in drug development. 
Among the various methods for mediation analysis, Mendelian 
randomization (MR) is of particular interest, as it takes advantage 
of natural genetic variation in human populations (46), allowing 
for stratification of individuals in a way that is analogous to a ran-
dom assignment in clinical trials (47). In the most basic MR design, 
a robust genetic association of a variant (e.g., in the PCSK9 locus) 
with an intermediate phenotype (levels of LDL cholesterol) can be 
used as a proxy to estimate the effect of a drug exposure (statins) 
on an outcome (cardiovascular disease) (48–50).

Provided that the underlying assumptions are met, MR 
methods offer a powerful tool for identifying potential causal 
relationships. For instance, the directionality of the relationship 
between levels of LDL cholesterol and risk of coronary artery 
disease (CAD), as predicted by MR (51), is consistent with the 
results of clinical trials (52). Similar results have been obtained 
for HDL cholesterol and CAD (53–55), as well as vitamin D and 
type 2 diabetes (56–58). Causal predictions are particularly use-
ful when clinical testing would be impractical or unethical — for 
instance, the effect of alcohol consumption on cardiovascular 
traits (59, 60). Encouraged by these early successes, the develop-
ment of MR methods is an active area of research. One particular 
challenge is that many genetic associations have small effects on 
intermediate phenotypes, which can lead to inaccuracies in the 
causal effect estimates (61).

Given the heterogeneity of information and types of regula-
tion within biological networks, multiscale models will be required 
to integrate information from different levels of biology (62, 63). 
A complete molecular description of network structure underlying 
human physiology does not exist, and we are left with all-by-all 

While these early phenotyping efforts have already produced 
an unprecedented wealth of information, it is safe to say that this 
is just the beginning. In the future, the phenotypic data collected 
for human populations have the potential to scale up along every 
possible dimension: depth (number of traits captured), width 
(number of time points sampled), and height (number of individ-
uals profiled). Integrating these highly dimensional data sets with 
genetics and clinical outcomes will be key to refining our mech-
anistic understanding of disease and prioritizing actionable ther-
apeutic hypotheses (Figure 2). However, such integration will be 
challenging given the current lack of coherent conceptual frame-
works and appropriate modeling techniques.

We are still in the early phase of our efforts to collect 
deep-omic phenotypes at scale, but the issue of replication 
should be carefully considered here as well. Apart from a few 
clinical biomarkers that have been routinely measured across 
large cohorts with carefully validated standardized procedures, 
no such standardization exists for most nonclinical biomarker 
measurements. Robust deep-omics measurement techniques 
that could be deployed on large cohorts are an active area of 
development (41, 42). Furthermore, application of these tech-
niques across multiple cohorts would require a substantial 
multi-organizational effort to standardize sample preparation 
procedures, instrumentation, and quality control measures. 
These are important and necessary steps that will determine the 
usability of deep-omics data in the long run.

Integrative modeling and causal inference
The ultimate goal of computational modeling is to enable accurate 
predictions of a system’s behavior under perturbation. The com-
plexity of biological systems, driven by a dense network of dynam-
ic biochemical and regulatory interactions, has long hindered 
our ability to model them comprehensively. A variety of methods 
have been developed to make predictions based on correlations 
between molecular, physiological, and clinical measurements 
(43); however, transitioning from correlation to causation (a key 
ingredient for a successful clinical trial) remains a great challenge.

Figure 2. Use of deep phenotyping to limit the number 
of intervention hypotheses. Association between genet-
ic variation, intermediate traits, and outcomes. The large 
number of correlation connections (gray) can be reduced 
by introduction of sparsity into a network structure via 
Bayesian network inference (blue). Spurious correlations 
can be removed if outcomes are explained better by a 
different path through the network. Mendelian ran-
domization (red) can also identify causal connections by 
using genetic variation within populations. Interventions 
on a red node or a blue node are more likely to succeed, 
as they mediate a path to a disease.
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Understanding both the interindividual differences in net-
work perturbations consequent to target engagement and how 
variable environmental conditions (77), including time of dos-
ing (78), alter drug response within an individual is intrinsic to 
the development of a more precise approach to medicine. Such 
insights are dependent on experiments that test interventions in 
small groups of human subjects under basal and perturbed con-
ditions in controlled environments. These experiments can afford 
deep and unbiased phenotypic characterization of their molecu-
lar, biomarker, and physiological responses. The data can provide 
unique insights into drug efficacy (79), identify biomarkers of drug 
susceptibility and response (80), and help refine patient selection 
for inclusion in clinical trials (81).

Importantly, experimental medicine addresses the greatest vul-
nerability in drug development — an accelerated passage through 
phase II, leading to poor estimates of drug efficacy due to shallow 
response measurements and low power, and thus to poor decisions 
about proceeding to phase III, the longest, most expensive, and 
most labor-intensive stage of clinical trials (82, 83). This bidirec-
tional integration of such deep phenotypic data from experimental 
medicine with large observational data sets — i.e., human phenom-
ic science (84) — promises to improve our understanding of drug 
action and variability in drug response. This knowledge will refine 
patient selection for large and expensive phase III trials, potentially 
limiting the size, duration, and cost of drug development.

Conclusion
The highly regulated world of clinical trials relies on blinded ran-
domized experiments to test whether a single intervention is a safe 
and effective means to improve human health. Recent advances 
in genomic technologies, biochemistry, imaging, and automation 
are generating an unprecedented amount of data that, in turn, 
produce an overwhelming number of therapeutic hypotheses that 
could be taken into clinical trials. Importantly, while mining big 
data does create a deluge of hypotheses, it also offers a path to nav-
igate through them. Large data sets, along with rigorous computa-
tional methods, enable validation, integration, and causal analy-
sis of multiple lines of evidence to support or refute a hypothesis, 
improve our understanding of disease mechanisms, and identify 
a development path most likely to succeed. Furthermore, small-
scale validation experiments afforded by experimental medicine 
provide a better understanding of candidate interventions and 
help to design better strategies for large-scale clinical testing. Out-
standing challenges include the development of capacity for rep-
lication of experimental medicine data sets and the recognition 
of and adjustment for sources of bias in cohort data (e.g., ethnic 
and social diversity). Ultimately, the incorporation of big data 
and experimental medicine approaches into a standard practice 
should help reduce the failure rate of clinical trials and lower the 
cost of drug development.
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correlation structure between genes, proteins, metabolites, and 
physiological measures constructed from big data. A variety of 
methods (e.g., Bayesian networks, partial correlation networks) 
have been developed to reduce the complexity of these networks 
by removing spurious connections that are explained best by other 
connections in the network (43). These techniques produce sparse 
representations of a network where edges are the most likely caus-
al relationships (Figure 2). We have not seen wide adoption of 
these methods to target discovery, but, combined with genetics, 
they could be of high value to clinical research.

Collectively, causal inference and integrative modeling can 
be instrumental in reducing the number of possible gene-disease 
associations to a more actionable subset. However, despite their 
early successes, current prediction methodologies are still in their 
infancy, and the predictions made by such methods can only be 
firmly established using experimentation and clinical testing.

Experimental medicine
Considering the inability of current computational models to pre-
dict accurately the effects of therapeutic interventions, our pri-
mary path to knowledge is through experimental testing. Animal 
models of disease are often used to perform rescue experiments 
that test the ability of a candidate intervention to revert or at least 
ameliorate the disease phenotype (64, 65). While proven to be 
extremely useful, animal models have known limitations due to 
their inability sometimes to recapitulate the physiological changes 
and response to therapy observed in humans (66, 67).

An alternative strategy is to learn about human physiology 
from individuals that carry loss-of-function mutations in promis-
ing target genes and can therefore be thought of as models of inhi-
bition of those targets (68). Such “natural experiments” are found 
in populations that underwent strong founder events or elevated 
rates of consanguineous marriages that resulted in high rates of 
homozygosity for rare mutations, including those predicted to 
have severe loss-of-function effects (69–71). Deep phenotypic 
profiling of these individuals, who are effectively knockout mod-
els for one or more genes, can be used to investigate the physio-
logical effects and safety implications of gene product inhibition, 
gain greater insights into biological pathways, explore gene modi-
fiers, and establish gene dosage effects on disease outcomes. Early 
analyses of naturally occurring human knockouts in European and 
Pakistani populations have validated known drug targets and sug-
gested new routes for intervention (e.g., NAV1.7 and pain, CCR5 
and HIV, APOC3 and HDL cholesterol) (69, 72, 73).

Although affording important insights into human biology 
(74), the genomics of large-scale data, including those derived 
from human knockouts, is only one hand clapping. Many patholo-
gies and indeed drug responses arise from genetics, environment, 
and time-dependent interactions. The full extent of these nonge-
netic contributions is hard to approximate, but most estimates sug-
gest that somewhere between 60% and 80% of phenotypic vari-
ation is environmental (75). In one example, a maximal estimate 
of the contribution of genomics to variability in drug response 
in young healthy volunteers was approximately 30% (76). Data 
recorded on drug administration in the electronic health record 
are rarely confirmed by measurements of drug exposure or other 
objective assessments of adherence.
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