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Introduction

Multiple myeloma (MM) is a hematological malignancy character-
ized by expansion of clonal plasma cells in the bone marrow (BM)
that produce monoclonal immunoglobulin (M band) (1). MM typi-
cally causes end-organ damage consisting of anemia, renal impair-
ment, lytic bony lesions, and hypercalcemia (1). Global incidence
has increased by 126% since 1990 (2), and it typically occurs in
the elderly, with 85% and 60% of diagnoses made in individuals
over 55 and 65 years of age, respectively. With improved treat-
ment regimens and the use of myeloablative chemotherapy with
autologous stem cell transplantation (ASCT), median survival
now exceeds 6 years, although this is highly variable depending
on disease risk factors. Despite dramatic therapeutic evolution,
myeloma remains largely incurable.

Interestingly, MM often progresses from a premalignant state,
monoclonal gammopathy of undetermined significance (MGUS),
that displays a lifelong rate of progression of 1% per year (3, 4). Smol-
dering multiple myeloma (SMM) is a second precursor state of active
MM wherein patients have higher frequencies of BM clonal plasma
cells than do MGUS patients, but have yet to develop symptoms of
myeloma-related end-organ damage (5). Malignant transforma-
tion is a consequence of a combination of factors including both
primary and secondary genetic events, genetic heterogeneity with
subsequent clonal evolution, and changes in the BM microenviron-
ment (6, 7). Additionally, immune dysfunction has been observed in
myeloma patients (8-14), raising the question of whether immuno-
logical escape is an additional mechanism of disease progression.
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Multiple myeloma (MM), a bone marrow-resident hematological malignancy of plasma cells, has remained largely
incurable despite dramatic improvements in patient outcomes in the era of myeloma-targeted and immunomodulatory
agents. It has recently become clear that T cells from MM patients are able to recognize and eliminate myeloma,
although this is subverted in the majority of patients who eventually succumb to progressive disease. T cell exhaustion
and a suppressive bone marrow microenvironment have been implicated in disease progression, and once these are
established, immunotherapy appears largely ineffective. Autologous stem cell transplantation (ASCT) is a standard

of care in eligible patients and results in immune effects beyond cytoreduction, including lymphodepletion, T cell
priming via immunogenic cell death, and inflammation; all occur within the context of a disrupted bone marrow
microenvironment. Recent studies suggest that ASCT reestablishes immune equilibrium and thus represents a logical
platform in which to intervene to prevent immune escape. New immunotherapies based on checkpoint inhibition
targeting the immune receptor TIGIT and the deletion of suppressive myeloid populations appear attractive, particularly
after ASCT. Finally, the immunologically favorable environment created after ASCT may also represent an opportunity
for approaches utilizing bispecific antibodies or chimeric antigen receptor T cells.

In this Review we discuss potential immunological processes
of myeloma control and immunological escape that manifests as
disease progression. In this context, we will address the current
status of immunotherapy in the clinical setting and in preclinical
models that together provide a perspective on the future direc-
tions of immunotherapy for myeloma.

Evidence for immune-mediated myeloma control
The role of immunosurveillance and the concept that tumors
progress from a state of immune equilibrium to an escape phase
are well described for solid tumors (Figure 1). Incomplete elimi-
nation of tumor cells results in an equilibrium whereby adaptive
and innate immunity keeps remaining tumor cells in a state of
functional dormancy (15). Escape occurs in the context of genetic
changes leading to loss of antigen expression or presentation,
induction of immunosuppressive microenvironment, and/or
development of resistance to immune effector responses (15).
Increasing evidence suggests that MGUS/SMM may represent
a state of immune equilibrium that is subsequently disrupted
during progression to active myeloma. Whole-exome sequenc-
ing of paired patient samples collected at diagnosis of MGUS/
SMM and again at MM found that most somatic mutations pre-
ceded diagnosis of clinical MM (16, 17), suggesting that although
genetic mutations are necessary for tumorigenesis, they are not
sufficient for transformation of myeloma. Consistent with this,
the mutational burden of MGUS/SMM patients who did not prog-
ress to MM was found to be equivalent to the mutational burden
of progressors (18). Thus, extrinsic factors are likely an additional
determinant of subclonal evolution and progression from prema-
lignant states to clinical myeloma (17).

Two randomized phase III trials recently provided direct
evidence of immune-mediated myeloma control, as patients
with high-risk SMM (5) demonstrated longer time to progression
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Figure 1. Potential immunoediting in multiple myeloma. Cancer immunoediting involves three sequential phases: elimination, equilibrium, and escape
(15). Elimination is mediated by collaboration of the adaptive and the innate immunity to eradicate malignant cells prior to the onset of clinical presen-
tation. However, if elimination is incomplete and rare myeloma cell variants enter dormancy, equilibrium is established. After autologous stem cell trans-
plantation (ASCT), equilibrium is mediated by effector T cells and is IFN-y-dependent. Escape is associated with the accumulation of genetic mutations,
resistance to immune effectors, CD8* T cell exhaustion, and changes in the microenvironment. Regulatory T cells (Tregs), suppressive dendritic cells (DCs),
T helper 17 (Th17) cells, tumor-associated macrophages, and myeloid-derived suppressor cells (MDSCs) all encourage escape and inhibit CD8* T cell func-
tion. ASCT appears to restore a period of immune equilibrium but is usually followed by further escape and disease progression.

with lenalidomide-based treatment compared with observation
alone (SWOGS0120, NCT00480363, ref. 19; ECOG E3A06,
NCTO01169337, ref. 20). Further support for immune-mediated
MM control lies in the ability to generate cytotoxic T cells against
autologous tumors from myeloma patients ex vivo (21-24), even
in the context of a low mutational burden (25). Indeed, freshly
isolated T cells from MGUS patients’ BM produced IFN-y in
response to autologous preneoplastic cell-loaded DCs, while
freshly isolated T cells from MM patients were unresponsive (21,
22). In a preclinical model, adding autologous or syngeneic T
cells to the BM graft dramatically improved survival and reduced
myeloma progression (26). In this model, myeloma-specific T
cells could also be recovered from recipient BM of long-term sur-
vivors of ASCT and could transfer myeloma-specific immunity
to secondary recipients. It is important to note that the Vk*MYC
model of myeloma used in these preclinical studies generates
similar disease to that in patients, with lytic lesions, renal impair-
ment, clonal plasma cell expansion, and associated M bands (27).
Moreover, this myeloma’s mutational burden is comparable to
that reported in humans (26, 28-30). The importance of memory
CD8" T cells as mediators of MM progression was also demon-
strated in patients, as a recent clinical study highlighted attrition
of stem-like memory CD8* T cells in MGUS patients’ BM as a
potential catalyst for progression to MM (31).

v8 T cells and natural killer T (NKT) cells also play an import-
ant role in immunosurveillance either by directly lysing tumor
cells or via activating other immune subsets (32-39). In myeloma,
¥8 T cells from patients’ BM or peripheral blood exhibited strong
antitumor responses to autologous myeloma cells, but not benign
cells (40). As myeloma cells express CD1d, they are also sensitive
to lysis by NKT cells (41). Interestingly, antitumor NKT cells could
be detected in patients with MGUS, nonprogressive disease, or
progressive myeloma; however, freshly isolated NKT cells from
both the blood and tumor bed of patients with progressive disease
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had markedly impaired IFN-y production, although this pheno-
type was reversible (13). Together, these studies indicate that T
cell-dependent myeloma immunity is present, albeit suppressed,
in patients with myeloma.

NK cells play a key role in myeloma immunity, and NK dys-
function has been implicated in myeloma progression in nontrans-
planted myeloma-bearing mice (42). MGUS patients were found
to have similar or increased numbers of NK cells compared with
healthy donors, while patients with late-stage myeloma have signifi-
cantly reduced NK cell numbers (43, 44). NK cells are particularly
important in the context of treatment with immunomodulatory
imide drugs (IMiDs), as IMiDs stimulate IL-2 production by T cells,
resulting in NK cell activation and expansion (40, 45, 46). Further-
more, a recent study found that IMiDs prime myeloma for killing
by daratumumab, a CD38-targeting mAb, by upregulating CD38
expression and sensitizing myeloma cells to NK cell-mediated anti-
body-dependent cell-mediated cytotoxicity (ADCC) (47). A second
antibody, elotuzumab, binds SLAMF7 on MM cells and Fc recep-
tors (CD16) on NK cells and macrophages to promote ADCC and
antibody-dependent cellular phagocytosis (48). This mAb does not
have single-agent activity but is active in combination with IMiDs.
NK cell-mediated myeloma immunity was addressed in a murine
model of ASCT, and surprisingly, NK cells were not required for
myeloma control in this setting (26). These data suggest that alter-
native mechanisms may underpin responses after ASCT, although
this has yet to be definitively investigated in a clinical setting.

Immunological escape facilitates myeloma
progression

Immunological escape is attributed to a multitude of factors,
including T cell exhaustion, tolerization by tumor-associated
antigen-presenting cells, alterations in cytokine production, and
accumulation of myeloid-derived suppressor cells (MDSCs) and
suppressive tumor-associated macrophages (15, 49, 50).
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Figure 2. Immunotherapies for myeloma. Immunotherapies for myeloma target the tumor itself, suppressive myeloid populations, and/or immune cells.
CD38-targeted mAbs target CD38-expressing myeloma cells and suppressive myeloid cells by antibody-dependent cell-mediated cytotoxicity (ADCC),
complement-dependent cytotoxicity (CDC), and antibody-dependent cellular phagocytosis (ADCP), which also facilitates immune cell activation. Autol-
ogous stem cell transplantation (ASCT) disrupts the tumor microenvironment (TME), directly eliminates myeloma cells, and promotes T cell-mediated
antimyeloma responses. Chimeric antigen receptor T cells (CAR T) and oncolytic viruses directly promote lysis of myeloma cells. Immune checkpoint inhibi-
tors and cancer vaccination approaches directly enhance T and NK cell-mediated antimyeloma responses. Immunomodulatory imide drugs (IMiDs) directly
inhibit myeloma cell growth, reduce angiogenesis, and promote immune cell activation.

T cell dysfunction can be due to senescence, characterized
by maintained functionality but limited proliferative capacity,
or exhaustion (51). The exhaustion phenotype is a continuum
whereby early exhaustion is associated with inflammatory cyto-
kine production and self-renewal capabilities, which are progres-
sively lost in the context of repeated antigen exposure (52). The
presence of exhausted T cells in myeloma patients is somewhat
controversial, with some studies suggesting that CD8* T cells are
senescent (8, 10, 11). Interestingly, senescence was telomere-
independent (8), and PD-1 expression, which is more traditional-
ly associated with exhaustion (53), was observed on CD57* CD8*
T cells. These cells displayed markers for both exhaustion and
senescence, possibly representing a composite state of dysfunc-
tion. Nonetheless, it is widely reported that CD8* T cells from
myeloma patients express multiple immune checkpoint recep-
tors, including PD-1, CTLA-4, TIM-3, LAG-3, and, recently,
TIGIT (9-12, 54). Chung et al. also found that these inhibitory
receptors are expressed both before and after ASCT (10). Ter-
minal T cell exhaustion is associated with loss of cytotoxicity by
subsets of CD4* and CD8" T cells that produce IFN-y, a cytokine
critical to tumor immunity (49, 50). Early in vitro studies indi-
cate that IFN-y directly inhibits myeloma cell growth (55), and
preclinical in vivo studies showed enhanced myeloma mortality
when IFN-y was absent in both transplant and nontransplant
settings (26, 42). Importantly, studies of BM CD8* T cells in
patients with myeloma revealed decreased IFN-y secretion and
reduced degranulation, indicative of terminal T cell exhaustion
(11). Preclinical models also support an active role for CD8* T

cell exhaustion in myeloma progression, as immune checkpoint
receptor expression correlates with disease progression in both
transplant and nontransplant models (9, 14). Furthermore, both
IFN-y production and CD107a production are decreased in mice
with high myeloma burdens, and loss of effector function cor-
related with disease progression (14, 26). While T cell exhaustion
occurs in response to chronic antigen stimulation (53), myeloma
cells can also express PD-L1 (56) and CD155 (57) (ligands for the
T cell immune receptors PD-1 and TIGIT, respectively) and may
thus contribute to exhaustion directly. Indeed, PD-L1 expression
on myeloma is associated with drug resistance, and serum levels
of PD-L1 predict progression-free survival in myeloma patients
(56, 58-60). NK cells from patients with MM were also reported
to have reduced expression of activating receptors and upreg-
ulation of PD-1, which allows inhibition of NK cytotoxicity by
PD-L1-expressing MM cells (61, 62).

Several studies suggest that DCs from patients with myeloma
are not only dysfunctional, but also promote myeloma cell surviv-
al and may be key determinants of the progression from MGUS
to active myeloma (63-66). In preclinical models of ASCT,
DC-derived IL-10 is pathogenic, and there is accumulation of
IL-10*'MHC-II® DCs in the BM of myeloma-relapsed mice (14), a
finding concurring with reports of DC accumulation in myeloma
patients’ BM (67). In these preclinical systems, myeloma control
is improved when donor DCs are specifically unable to produce
IL-10 (14). Several studies have demonstrated that DCs from
patients with myeloma can elicit strong myeloma-specific T cell
responses ex vivo (22, 68), indicating that the tumor microenvi-
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Figure 3. Induction of a favorable immunological environment after ASCT. Active myeloma is associated with an immunosuppressive bone marrow (BM)
microenvironment that is characterized by an expansion of suppressive dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), CSF-1R-expressing
macrophages, regulatory T cells (Tregs), and exhausted CD8* T cells. T cell exhaustion occurs in response to chronic antigen exposure and IL-10 derived from
suppressive DCs. Furthermore, myeloma cell growth is supported by IL-17A from Th17 cells and paracrine IL-6 production. After ASCT, a lymphodepleted and
inflammatory environment is created that promotes myeloma-specific memory T cell expansion and the priming of naive T cells by functional dendritic
cells. Myeloma-specific CD8* effector T cells (Teff) mediate IFN-y-dependent myeloma-specific immunity in the context of CD4* T cell help.

ronment (TME) may also influence DCs’ ability to prime effective
antimyeloma immunity. Consistent with this, aberrant IL-6 levels
in the myeloma milieu have been associated with dysfunctional
antigen presentation (63, 69).

Additionally, changes in the TME cytokine milieu can influ-
ence tumor escape by driving noncytolytic T cell differentiation
paradigms that in turn are permissive of tumor growth. IL-6, a
cytokine known to be dysregulated in patients with myeloma (70),
plays a role in myeloma progression (71) and, together with TGF-,
IL-21,and IL-23 (72), promotes the expansion of IL-17A-producing
Th17 cells (73, 74). Clinical studies have linked angiogenesis with
elevated IL-17A levels in the sera of myeloma patients, and IL-17A
broadly promotes myeloma growth (75-78). Importantly, IL-17A
deletion in donor grafts, or IL-17A mAb blockade, was sufficient to
promote long-term myeloma control in mice after transplantation
(26); IL-17A inhibition was also able to delay disease progression
in the nontransplant setting (79).

In the TME, macrophages are either antitumorigenic (M1) or
differentiate into tumor-associated macrophages with an immu-
nosuppressive M2-like phenotype. This differentiation occurs
in response to cytokines, chemokines, and growth factors in the
TME (80). CSF-1is an important mediator of macrophage surviv-
al, differentiation, and function, and CSF-1 overexpression has
been associated with tumor development and progression (81-83).
Accordingly, CSF-1 receptor (CSF-1R) blockade has been shown
to promote antitumor immunity (83, 84). Importantly, myeloma
progression has been associated with accumulation of CSF-1R-
expressing macrophages in preclinical studies, and targeting
these populations using CSF-1R-blocking antibodies has proven
effective, particularly after ASCT (14, 82, 85). Additionally, IL-18-
dependent MDSCs have been implicated in myeloma progression,
and IL-18 blockade improved survival in a murine model (86).
Importantly, this finding was supported by clinical data: IL-18
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and polymorphonuclear MDSC signature genes correlated with
myeloma outcome, and high IL-18 levels in BM were associated
with poor prognosis (86).

Thus, increasing evidence suggests that myeloma progres-
sion is associated with loss of immune control that is reflective
of changes in T cell differentiation, T cell exhaustion, and a sup-
pressive BM microenvironment. Importantly, these changes can
now be targeted with rational immunotherapeutic combinations.

Clinical status of myeloma immunotherapy and
preclinical lessons
We have now entered a new era of therapy for myeloma firmly
centered on immunotherapy, with a clear expansion in the num-
ber of clinical trials exploring various immune-based therapies.
Most prominently, these therapeutics include agents targeting
myeloma-specific antigens, including daratumumab (CD38), onco-
lytic viruses, and chimeric antigen receptor (CAR) T cells (targeting
B cell maturation antigen [BCMA]), and T cell-targeted therapies,
including checkpoint inhibition and tumor vaccination, typically in
combination with current standard-of-care drugs (Figure 2).
Immune checkpoint inhibition. Use of immunotherapy in
myeloma patients has had a somewhat tumultuous start, with
early clinical studies reporting a lack of efficacy of nivolumab
monotherapy (87). Furthermore, in preclinical studies to date,
anti-PD-1 monotherapy has only been described as effective
in myeloma when administered after stem cell transplantation
(14, 42, 88-90), and at an early time point (26). Interestingly, a
clinical trial using pembrolizumab early after ASCT, followed by
lenalidomide, reported a complete response (CR) in 7 of 23 (31%)
patients (91). This represents an improvement from the initial
trial in relapsed/refractory MM (RRMM) patients, in which CR
was observed only in one patient who underwent radiotherapy
(87). Notably, this small post-transplant study was terminated
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early for failure to meet its interim analysis endpoint; howev-
er, the treatment was associated with minimal residual disease
(MRD) negativity in 75% of patients at 180 days after ASCT (91).
Nonetheless, although preclinical studies suggest that current
immunotherapies may be most effective when implemented
early after ASCT (a concept supported by clinical observations in
patients) (10), further investigation in large randomized clinical
trial cohorts is required.

Preclinical models also suggest that a combination approach
targeting multiple checkpoint inhibitors may promote syn-
ergistic tumor control (88). A corroborating, phase I/II trial
(NCT02681302, ClinicalTrials.gov) investigating ipilimumab
in combination with nivolumab early after ASCT, in high-risk
transplant-naive or recurrent MM patients, reported promising
preliminary results with 71% and 67% of patients, respectively,
achieving progression-free survival at 18 months follow-up. This
promising rate of progression-free survival may be, in part, due
to Treg depletion, which is at least one mechanism of action of
ipilimumab in vivo (92, 93). This trial provides further evidence
for both the implementation of immunotherapy early after ASCT
and the synergistic potential of combination approaches. Unsur-
prisingly, with this combination of checkpoint inhibitors, 65% of
patients developed immune-related adverse events grade 2 or
higher and required treatment with systemic steroids. An alter-
native strategy to checkpoint blockade is treatment with agonist
antibodies against the costimulatory receptor CD137 (4-1BB),
which promotes CD8* T cell effector function and proliferation
(94). Accordingly, CD137 agonists have been shown to prolong
myeloma control in preclinical models by promoting CD8* T cell
effector function in BM in both transplant and nontransplant set-
tings (26, 42, 95). A phase I clinical trial (NCT02252263) inves-
tigating the combination of elotuzumab and the CD137 agonist
urelumab in patients with myeloma has been completed; how-
ever, results have not been reported. It should be noted that, in
a preclinical model, treatment with a CD137 agonist antibody
early after ASCT also upregulated PD-1 and TIM-3 expression
on CD8* T cells, and the staged addition of an anti-PD-1 block-
ing antibody further enhanced myeloma control (26). Delayed,
or staged, anti-PD-1 treatment is particularly important, as
simultaneous PD-1 blockade abrogated the effects of a CD137
agonist in a preclinical model (96). This effect, although yet to
be confirmed in a clinical setting, will need to be considered in
the design of clinical trials in an era of combination approaches.
Furthermore, the potential toxicities of agonist CD137 with anti-
PD-1 after ASCT are yet to be assessed and will likely be specific
to the particular CD137 agonist mAb used.

IMiDs. Myeloma-targeted therapies provide another avenue
to promote disease control and are particularly attractive in com-
bination with immune-targeted therapies. An additional strategy
involves the use of agents with both myeloma on-target effects
and immunologically favorable off-target effects, such as IMiDs
(e.g., thalidomide, lenalidomide, and pomalidomide). IMiDs act
through cereblon-dependent degradation of the transcription fac-
tors Ikaros (IKZF1) and Aiolos (IKZF3), which induce myeloma
cell apoptosis but also stimulate T and NK cells (97, 98). Impor-
tantly, studying these drugs in preclinical models is now possible
with the generation of genetically modified mice that metabolize
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thalidomide derivatives with demonstrable degradation of Ikaros
and Aiolos (99). Specifically, IMiDs boost proliferation, enhance
IL-2 and IFN-y production, and reduce IL-10 production in both
CD4"and CD8* T cells, which subsequently enhance NXK cell acti-
vation (100, 101). Treg expansion is also suppressed in vitro (102).
To this end, lenalidomide is being explored in combination with
DC/myeloma hybridoma vaccines and was shown to increase
this therapy’s immunogenicity, with enhanced cytolytic capacity
observed against myeloma cells (101). In patients with RRMM, the
combination of elotuzumab with pomalidomide and dexameth-
asone produced superior outcomes and reduced risk of progres-
sion compared with pomalidomide and dexamethasone alone
(NCT02654132) (103).

In accordance with the concept of improving responses using
combinatory approaches, several studies suggested that combin-
ing IMiDs with anti-PD-1/PD-L1 antibodies may produce superior
responses compared with either agent alone (104). Unfortunate-
ly, the clinical implementation of anti-PD-1/PD-L1 agents with
IMiDs has resulted in substantial toxicity and no improvement in
objective response rates (ORRs; NCT02289222, NCT02036502)
(105-107), such that a number of trials were placed on a clinical
hold by the FDA and subsequently terminated. With the recent
development of a murine model that is sensitive to thalidomide
and its derivatives (99), it may be prudent to assess the toxicity of
combinations in preclinical myeloma models before taking any
new IMiD-containing combinatory approaches to the clinic.

Monoclonal antibodies. Elotuzumab, described above, showed
clinical efficacy in combination with IMiDs and dexametha-
sone and is FDA-approved for use in previously treated myeloma
patients (103). A preclinical mouse study suggests that elotuzumab
in combination with anti-PD-1 may further improve response
rates, and a phase III clinical trial in RRMM patients is currently
under way (NCT02726581) (108).

Daratumumab, a fully human mAb that binds to CD38, also
has FDA approval for previously treated myeloma patients after
several phase III trials demonstrated strikingly improved out-
comes for RRMM patients in the daratumumab arms when it was
administered in combination with dexamethasone and lenalid-
omide (NCT02076009) (109) or bortezomib (NCT02136134)
(110). Interestingly, although daratumumab targets CD38*
myeloma cells, it also depletes suppressive CD38* Tregs and
myeloid populations. Subsequently, T cells from patients treated
with daratumumab had oligoclonal expansion and enhanced
capacity to secrete IFN-y (111). This represents a mechanism
beyond the direct killing of CD38-expressing myeloma cells
by ADCC and complement-mediated cytotoxicity (111). Pre-
liminary results from preclinical solid tumor models suggest
that combination therapy with daratumumab and anti-PD-1
may prove synergistic (112). Clinical trials are currently ongo-
ing of daratumumab and nivolumab/pembrolizumab in RRMM
patients, and results are eagerly awaited (NCT02431208,
NCTO01592370, NCT03357952).

IL-17A’s role in promoting myeloma progression is now
well established, and treatment with anti-IL-17A after stem cell
transplantation prolonged myeloma control in preclinical mod-
els (26, 76). A phase I clinical trial combining anti-IL-17A with
PDROO1 (anti-PD-1) is currently recruiting RRMM patients
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(NCT03111992). This combination’s activity in RRMM remains to
be seen, and negative data would not preclude activity when it is
used early after ASCT.

Oncolytic viruses. Oncolytic viruses are used to promote spe-
cific lysis of myeloma cells; however, early clinical trials showed
limited long-term tumor control, and this therapy is currently
being investigated in various combinations. The most common
combinations are with standard myeloma therapies including
IMiDs (reovirus: NCT03015922), proteasome inhibitors plus
dexamethasone (reovirus: NCT02514382, NCT02101944), or
cyclophosphamide to limit natural antiviral immunity (mea-
sles: NCT00450814, NCT02192775; vesicular stomatitis virus:
NCT03017820, NCT00450814). A preclinical study using a bor-
tezomib-resistant Vk*MYC myeloma clone demonstrated a syner-
gistic antitumor effect with coadministration of bortezomib and
reovirus (113). This synergism was due to augmented reovirus rep-
lication in target cells, which stimulated T and NXK cell responses
and reduced Treg accumulation. Another study, using the 5TGM1
murine model and human myeloma cell lines, demonstrated
enhanced immune-mediated antimyeloma effects after treat-
ment with a reovirus (114), which was augmented by lenalidomide
in vitro (115). Oncolytics remain in early stages of clinical investi-
gation, and more information is needed about how these viruses
promote immune-mediated antimyeloma effects. Results from
clinical trials combining oncolytic viruses with IMiDs may provide
some further insights into this possible mechanism of action.

Cellular-based therapies. ASCT remains an effective therapy
for eligible patients and provides a survival benefit beyond novel
agents alone (116-119). Currently, the prolongation of plateau
phase induced by ASCT is largely assumed to be the result of
myeloablative chemotherapy and cytoreduction therein (120).
However, a subset of patients entering ASCT in complete remis-
sion demonstrate a survival plateau similar to that seen with
immune-mediated graft-versus-leukemia effects after allogeneic
stem cell transplantation (121). Indeed, several key immunological
changes associated with ASCT suggest that disease plateau after
transplant may arise from more than just cytoreduction. Firstly,
melphalan, the cytotoxic agent routinely used during condition-
ing, has been shown to induce immunogenic cell death, a rapid
burst of inflammatory cytokines, and enhanced tumor antigen
uptake by DCs (122). Secondly, the reconstituting CD4*/CD8*
T cell ratio is inverted following ASCT and provides a favorable
effector T cell/Treg ratio (10, 123). Finally, ASCT conditioning
ablates BM, disrupting the suppressive TME that is established in
myeloma patients. Indeed, given that ASCT generates an inflam-
matory environment, in the context of lymphodepletion, antigen
presentation, and BM microenvironment disruption, it can be
postulated that ASCT reestablishes a state of myeloma-immune
equilibrium, perhaps even elimination, in patients who achieve
long-term control of disease (Figure 3).

Allogeneic stem cell transplantation (allo-SCT) remains the
only curative treatment option for many hematological malignan-
cies, particularly leukemias (124). The curative potential of allo-
SCT is largely mediated by alloreactive T cells, referred to as the
graft-versus-leukemia effect (125). However, allo-SCT is limited
by transplant-related complications, particularly graft-versus-host
disease (GVHD), and relapse remains the major cause of fail-
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ure (120). Surprisingly, in patients with myeloma, alloreactive T
cells are limited in their ability to generate a potent graft-versus-
myeloma (GVM) response, and allo-SCT is not used in this patient
cohort outside of clinical trials. Clinical evidence of GVM effects
was observed in some patients, who relapsed after allo-SCT and
subsequently responded to donor lymphocyte infusions (DLI),
often in association with GVHD (124, 125). However, the com-
parison of response rates to DLI highlighted less potent graft-
versus-tumor effects in patients with myeloma compared with
other hematological malignancies (126, 127). Furthermore, a large
prospective study found that allografting patients with myeloma
did not provide a survival advantage above ASCT, and relapse
remained the major cause of death (48%) (128). Therefore, it
appears that alloreactive T cell responses are specifically subverted
in patients with myeloma, and the potential mechanisms govern-
ing this immune escape remain unclear.

Another cellular-based therapy still under evaluation is the
use of marrow-infiltrating lymphocytes (MILs) as a source of T
cells for adoptive cell therapy. MILs have been shown to be a par-
ticularly rich source of myeloma-specific cytotoxic and memory
T cells owing to exposure to malignant plasma cells in BM (129).
In a murine myeloma model, adoptive transfer of MILs resulted
in superior survival compared with peripheral blood lymphocytes
(130). Furthermore, in a small clinical trial with 25 patients, an
approximately 30% CR rate was observed in patients receiving
MILs early after ASCT, and median overall survival had not been
reached at 7 years (130). A randomized phase II trial assessing the
efficacy of MILs administered early after ASCT with lenalidomide
is ongoing (NCT01858558).

The future of immunotherapy in myeloma

Novel immune checkpoint inhibitors. The upregulation of TIGIT on
T cells from both mice and patients with myeloma, in both trans-
plant and nontransplant settings, has revealed a novel therapeutic
target that may prove more attractive than current PD-1-targeted
therapies (9, 14). TIGIT mAb blockade significantly enhanced
effector CD8* T cell function and improved survival when admin-
istered early after ASCT in mice (14). Surprisingly, TIGIT blockade
was also effective at preventing myeloma progression when admin-
istered in a nontransplant, preclinical setting prior to myeloma
progression (9). Furthermore, TIGIT blockade effectively targets
both T cell exhaustion and DC-driven immunosuppression, as this
therapy also reduced DC-derived IL-10 (14), another described
mechanism of immune evasion (131). A preliminary report (132)
suggests that specific Fe-binding anti-TIGIT antibodies may also
deplete Tregs in vivo. Therefore, targeting of TIGIT holds consid-
erable promise, and it would be particularly interesting to explore
TIGIT blockade in combination with immunotherapies targeting
the BM microenvironment, including CSF-1R-dependent (14, 84)
or IL-18-dependent (86) myeloid cells. The combination approach
of stimulating T cells with a CD137 agonist followed by PD-1 block-
ade after ASCT (to allow expansion of myeloma-specific clones in
the absence of exhaustion) is also attractive (26).

Vaccination approaches. Several vaccination approaches have
been tested in myeloma, including idiotype-based, DC-based,
cancer testis antigen-based (MAGE-A3, NY-ESO-1, etc.), and
GM-CSF cellular-based vaccines (133). Unfortunately, despite
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induction of immunogenicity, many of these formulations have
proven largely ineffective as monotherapies (54, 134-138). This
has been attributed to a range of factors, including impaired anti-
gen presentation (63, 67, 139), an immunosuppressive TME (84~
86), and low immunogenicity or lack of activity with single pep-
tide targets (138) in patients with myeloma. To provide meaningful
clinical responses, recent efforts have sought to combine immu-
nomodulating therapies with myeloma vaccination approaches.
The most successful combination to date is the administration of
a DC/myeloma fusion vaccination after ASCT (140). In this trial
with a cohort of 24 patients, 78% achieved a CR or a very good par-
tial response (VGPR), and all evaluable patients showed at least
a two-fold expansion of myeloma-specific CD4'/CD8" T cells.
Notably, the rate of CRs increased dramatically between day 100
and 1 year after vaccination, in the absence of other maintenance
therapy. These data suggest that the clinical effect is largely due
to the vaccination, such that a randomized, multicenter trial using
DC/myeloma fusion vaccination is being conducted through a
cooperative consortium (BMT CTN 1401, NCT02728102). In
RRMM patients without ASCT, the same DC/myeloma fusion
vaccination approach resulted only in disease stabilization in 69%
of patients (141). Therefore, the rationale to incorporate vaccina-
tion early in the course of disease, particularly in combination with
ASCT, is strong (142).

Idiotype vaccination has, historically, proven unsuccessful in
patients with myeloma (143, 144). However, a recent study incor-
porating idiotype-pulsed DC vaccination after ASCT showed
improved survival in treated patients compared with historical
controls who underwent ASCT without vaccination at the same
center during the same time period (median overall survival 5.3
vs. 3.4 years) (145). Although promising, this therapy does need to
be investigated in a controlled clinical trial before these results can
be clearly interpreted.

Bispecific antibodies. Bispecific antibodies that bridge T cells
(typically via CD3) and tumor-specific antigens (typically BCMA
in MM) are now entering clinical trials (146). The most common
formulations are bispecific T cell engagers (BiTEs), which only
comprise the variable heavy and light chain regions. This allows
for T cell engagement and activation after tumor antigen recog-
nition that is independent of TCR specificity (147). The BCMA
BiTE AMG-420 was tested in a heavily pretreated patient cohort
and showed a 70% response rate, including 5 MRD-negative
stringent CRs, 1 VGPR, and 1 partial response (148). An addi-
tional BCMA BiTE with an extended half-life is also being tested
(149) and showed increased efficacy in vitro in combination with
lenalidomide or pomalidomide (150). It is important to note that
BiTEs rely on the presence of a functional T cell response, and
this therapy is likely to be most efficacious after ASCT or in newly
diagnosed patients. Nonetheless, an early-phase trial demon-
strates promising efficacy of a BCMA-CD3 bispecific antibody
(CC-93269) in heavily pretreated patients, with an ORR of 88.9%
after treatment at the highest dose bracket (151). However, lon-
ger follow-up and larger cohorts are necessary to determine the
durability of these responses.

CAR T cells. Chimeric antigen receptor (CAR) engineered T
cells have been revolutionary in the treatment of patients with B
cell malignancies, in which CD19 serves as an ideal target. The
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use of CAR T cells in hematological malignancies is compre-
hensively reviewed by Frigault and Maus in this Review series
(152). In patients with myeloma, there are several available
targets, but BCMA is the most widely studied (153). BCMA is
expressed only in late memory B cells and plasma cells, is more
highly expressed on malignant plasma cells compared with
healthy cells (154), and is widely expressed in myeloma patients
(155). BCMA-targeted CAR T cells have produced very promis-
ing results in phase I clinical trials in RRMM patients, with many
reporting ORRs of 64%-88% in this historically difficult-to-treat
patient cohort (NCT03090659, NCT03093168, NCT03288493,
NCTO03318861, NCT02658929, NCT02215967) (156-158).
Other potential CAR T cell targets in myeloma include CD138
(NCT03672318) (159), SLAMF7 (NCT03958656) (160), and
GPRC5D (161). These targets are all in early stages of testing, but
preclinical and in vitro studies show promising activity against
tumor cell lines and primary myeloma cells.

Disappointingly, despite impressive responses early after
CAR T cell infusion, lack of persistence and durability of current
CAR T cells has precluded long-term disease control in many
patients (153), likely owing to CAR T cell-intrinsic factors (162,
163), rejection, loss of target antigen (156, 164), and the immuno-
suppressive BM TME (165). Early clinical formulations of CAR T
cells were generated without regard for phenotype or functional
heterogeneity in leukapheresis products. However, a clinical study
found that higher frequencies of CD8" T cells with a naive or stem
memory phenotype in the leukapheresis product correlated with
a better outcome (158). Importantly, the frequency of early mem-
ory T cells was reduced in T cell products from heavily pretreated
patients, which suggests that intervention at earlier stages of dis-
ease might prove beneficial (166). Interestingly, a clinical study
(NCT03455972) exploring combination of CD19 and BMCA
CAR T cells administered between days 14 and 20 after ASCT
reported dramatic in vivo CAR T cell expansion, 100-fold great-
er than that observed in the group’s previous study using RRMM
patients (167); however, the presence of the CD19 CAR T cells is
potentially confounding (168). Nonetheless, the degree of CAR
T cell expansion was the most robust marker correlating with
response across MM trials, and this expansion was most prom-
inent in lymphodepleted patients (156, 158, 169). Therefore, it is
plausible that CAR T cells will also be most efficacious when used
in combination with ASCT. Additional approaches to improve
CAR T cell quality include selecting for naive or stem/memory T
cells (158), engineering of CAR T cells for exhaustion resistance
(170), administration of defined compositions of CD4*/CD8* T
cells (164), and informed selection of costimulatory domains for
CD28 (brisk T cell proliferation but limited T cell persistence)
and/or 4-1BB (less potent effector function but increased per-
sistence) (171-173). Recently, BCMA expression by MM has been
dramatically enhanced by prevention of cleavage of BCMA from
the cell surface with a y-secretase inhibitor, and a phase I clinical
trial (NCT03502577) is ongoing (174). Finally, the BM TME could
be targeted with therapies including daratumumab, other sup-
pressive myeloid cell-targeted mAbs, or IMiDs (14, 86, 111, 175) to
limit CAR T cell exhaustion. Ideally, these combination
approaches should be studied in preclinical models to examine
the potential for additive or synergistic toxicity.
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Additionally, there is strong preclinical and preliminary clin-
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Conclusions

Immunotherapy is now a cornerstone therapeutic approach for
the treatment of myeloma but at present is limited by the ability
to generate durable functional antimyeloma T cell responses.
While preclinical models of myeloma are important in generat-
ing rational therapeutic paradigms, these must be tested in rigor-
ous and well-designed clinical trials. We now have a wide range
of active agents to choose from for the treatment of myeloma,
and while many of these are immunostimulatory (e.g., IMiDs,
elotuzumab), many are immunosuppressive (e.g., dexameth-
asone, proteasome inhibitors). To date, the field has combined
agentswithoutaclearregard for theimmunological consequences
andhaslargelytakena “moreagentsisbetter” approach. Givenour
increasing understanding of the importance of myeloma-specific
immunity, now would seem an appropriate time to consider com-
bining agents in a more strategic fashion and including explor-
atory immunological endpoints in studies. Furthermore, initiat-
ing immunotherapy earlier in the course of disease at a time of
superior T cell fitness may also improve the quality of responses.

The Journal of Clinical Investigation

ical evidence to suggest that ASCT generates a state of T cell-
dependent myeloma control and thus represents a rational
MRD-low platform for immunotherapy approaches. Finally,
combining immunotherapies that target myeloma cells and the
BM TME with ASCT, CAR T cell, and/or vaccination approaches
may be the key to reestablishing immune equilibrium and gener-
ating durable immunological control of disease.
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