Recently published - More

Abstract

Patients with myeloproliferative neoplasms (MPNs) frequently progress to bone marrow failure or acute myeloid leukemia (AML), and mutations in epigenetic regulators such as the metabolic enzyme isocitrate dehydrogenase (IDH) are associated with poor outcomes. Here, we showed that combined expression of Jak2V617F and mutant IDH1R132H or Idh2R140Q induces MPN progression, alters stem/progenitor cell function, and impairs differentiation in mice. Jak2V617F Idh2R140Q–mutant MPNs were sensitive to small-molecule inhibition of IDH. Combined inhibition of JAK2 and IDH2 normalized the stem and progenitor cell compartments in the murine model and reduced disease burden to a greater extent than was seen with JAK inhibition alone. In addition, combined JAK2 and IDH2 inhibitor treatment also reversed aberrant gene expression in MPN stem cells and reversed the metabolite perturbations induced by concurrent JAK2 and IDH2 mutations. Combined JAK2 and IDH2 inhibitor therapy also showed cooperative efficacy in cells from MPN patients with both JAK2mut and IDH2mut mutations. Taken together, these data suggest that combined JAK and IDH inhibition may offer a therapeutic advantage in this high-risk MPN subtype.

Authors

Anna Sophia McKenney, Allison N. Lau, Amritha Varshini Hanasoge Somasundara, Barbara Spitzer, Andrew M. Intlekofer, Jihae Ahn, Kaitlyn Shank, Franck T. Rapaport, Minal A. Patel, Efthymia Papalexi, Alan H. Shih, April Chiu, Elizaveta Freinkman, Esra A. Akbay, Mya Steadman, Raj Nagaraja, Katharine Yen, Julie Teruya-Feldstein, Kwok-Kin Wong, Raajit Rampal, Matthew G. Vander Heiden, Craig B. Thompson, Ross L. Levine

×

Abstract

The endothelial tyrosine kinase receptor Tie1 remains poorly characterized, largely owing to its orphan receptor status. Global Tie1 inactivation causes late embryonic lethality, thereby reflecting its importance during development. Tie1 also plays pivotal roles during pathologies such as atherosclerosis and tumorigenesis. In order to study the contribution of Tie1 to tumor progression and metastasis, we conditionally deleted Tie1 in endothelial cells at different stages of tumor growth and metastatic dissemination. Tie1 deletion during primary tumor growth in mice led to a decrease in microvessel density and an increase in mural cell coverage with improved vessel perfusion. Reduced angiogenesis and enhanced vascular normalization resulted in a progressive increase of intratumoral necrosis that caused a growth delay only at later stages of tumor progression. Concomitantly, surgical removal of the primary tumor decreased the number of circulating tumor cells, reduced metastasis, and prolonged overall survival. Additionally, Tie1 deletion in experimental murine metastasis models prevented extravasation of tumor cells into the lungs and reduced metastatic foci. Taken together, the data support Tie1 as a therapeutic target by defining its regulatory functions during angiogenesis and vascular abnormalization and identifying its role during metastasis.

Authors

Silvia La Porta, Lise Roth, Mahak Singhal, Carolin Mogler, Carleen Spegg, Benjamin Schieb, Xianghu Qu, Ralf H. Adams, H. Scott Baldwin, Soniya Savant, Hellmut G. Augustin

×

Abstract

Enthesopathy is a disorder of bone, tendon, or ligament insertion. It represents one-fourth of all tendon-ligament diseases and is one of the most difficult tendon-ligament disorders to treat. Despite its high prevalence, the exact pathogenesis of this condition remains unknown. Here, we show that TGF-β was activated in both a semi-Achilles tendon transection (SMTS) mouse model and in a dorsiflexion immobilization (DI) mouse model of enthesopathy. High concentrations of active TGF-β recruited mesenchymal stromal stem cells (MSCs) and led to excessive vessel formation, bone deterioration, and fibrocartilage calcification. Transgenic expression of active TGF-β1 in bone also induced enthesopathy with a phenotype similar to that observed in SMTS and DI mice. Systemic inhibition of TGF-β activity by injection of 1D11, a TGF-β–neutralizing antibody, but not a vehicle antibody, attenuated the excessive vessel formation and restored uncoupled bone remodeling in SMTS mice. 1D11-treated SMTS fibrocartilage had increased proteoglycan and decreased collagen X and matrix metalloproteinase 13 expression relative to control antibody treatment. Notably, inducible knockout of the TGF-β type II receptor in mouse MSCs preserved the bone microarchitecture and fibrocartilage composition after SMTS relative to the WT littermate controls. Thus, elevated levels of active TGF-β in the enthesis bone marrow induce the initial pathological changes of enthesopathy, indicating that TGF-β inhibition could be a potential therapeutic strategy.

Authors

Xiao Wang, Liang Xie, Janet Crane, Gehua Zhen, Fengfeng Li, Ping Yang, Manman Gao, Ruoxian Deng, Yiguo Wang, Xiaohua Jia, Cunyi Fan, Mei Wan, Xu Cao

×

Abstract

The prognosis for bladder cancer patients with lymph node (LN) metastasis is dismal and only minimally improved by current treatment modalities. Elucidation of the molecular mechanisms that underlie LN metastasis may provide clinical therapeutic strategies for LN-metastatic bladder cancer. Here, we report that a long noncoding RNA LINC00958, which we have termed bladder cancer–associated transcript 2 (BLACAT2), was markedly upregulated in LN-metastatic bladder cancer and correlated with LN metastasis. Overexpression of BLACAT2 promoted bladder cancer–associated lymphangiogenesis and lymphatic metastasis in both cultured bladder cancer cell lines and mouse models. Furthermore, we demonstrate that BLACAT2 epigenetically upregulated VEGF-C expression by directly associating with WDR5, a core subunit of human H3K4 methyltransferase complexes. Importantly, administration of an anti–VEGF-C antibody inhibited LN metastasis in BLACAT2-overexpressing bladder cancer. Taken together, these findings uncover a molecular mechanism in the lymphatic metastasis of bladder cancer and indicate that BLACAT2 may represent a target for clinical intervention in LN-metastatic bladder cancer.

Authors

Wang He, Guangzheng Zhong, Ning Jiang, Bo Wang, Xinxiang Fan, Changhao Chen, Xu Chen, Jian Huang, Tianxin Lin

×

Abstract

The presence of persistent, latent HIV reservoirs in CD4+ T cells obstructs current efforts to cure infection. The so-called kick-and-kill paradigm proposes to purge these reservoirs by combining latency-reversing agents with immune effectors such as cytotoxic T lymphocytes. Support for this approach is largely based on success in latency models, which do not fully reflect the makeup of latent reservoirs in individuals on long-term antiretroviral therapy (ART). Recent studies have shown that CD8+ T cells have the potential to recognize defective proviruses, which comprise the vast majority of all infected cells, and that the proviral landscape can be shaped over time due to in vivo clonal expansion of infected CD4+ T cells. Here, we have shown that treating CD4+ T cells from ART-treated individuals with combinations of potent latency-reversing agents and autologous CD8+ T cells consistently reduced cell-associated HIV DNA, but failed to deplete replication-competent virus. These CD8+ T cells recognized and potently eliminated CD4+ T cells that were newly infected with autologous reservoir virus, ruling out a role for both immune escape and CD8+ T cell dysfunction. Thus, our results suggest that cells harboring replication-competent HIV possess an inherent resistance to CD8+ T cells that may need to be addressed to cure infection.

Authors

Szu-Han Huang, Yanqin Ren, Allison S. Thomas, Dora Chan, Stefanie Mueller, Adam R. Ward, Shabnum Patel, Catherine M. Bollard, Conrad Russell Cruz, Sara Karandish, Ronald Truong, Amanda B. Macedo, Alberto Bosque, Colin Kovacs, Erika Benko, Alicja Piechocka-Trocha, Hing Wong, Emily Jeng, Douglas F. Nixon, Ya-Chi Ho, Robert F. Siliciano, Bruce D. Walker, R. Brad Jones

×

In-Press Preview - More

Abstract

The tumor suppressor FBW7 targets oncoproteins such as c-MYC for ubiquitylation and is mutated in several human cancers. We noted that in a significant percentage of colon cancers, FBW7 protein is undetectable despite the presence of FBW7 mRNA. To understand the molecular mechanism of FBW7 regulation in these cancers, we employed proteomics and identified the deubiquitinase USP9X as an FBW7 interactor. USP9X antagonised FBW7 ubiquitylation, and Usp9x deletion caused Fbw7 destabilization. Mice lacking Usp9x in the gut showed reduced secretory cell differentiation and increased progenitor proliferation, phenocopying Fbw7 loss. In addition, Usp9x inactivation impaired intestinal regeneration and increased tumor burden in colitis-associated intestinal cancer. c-Myc heterozygosity abrogated increased progenitor proliferation and tumor burden in Usp9x-deficient mice, suggesting that Usp9x suppresses tumor formation by regulating Fbw7 protein stability and thereby reducing c-Myc. Thus, we identify a novel tumor suppressor mechanism in the mammalian intestine that arises from the posttranslational regulation of FBW7 by USP9X independent of somatic FBW7 mutations.

Authors

Omar M. Khan, Joana Carvalho, Bradley Spencer-Dene, Richard Mitter, David Frith, Ambrosius P. Snijders, Stephen A. Wood, Axel Behrens

×

Abstract

Dravet syndrome (DS) is a severe childhood-onset epilepsy commonly due to mutations of the sodium channel gene SCN1A. DS patients have a high risk of sudden unexplained death in epilepsy (SUDEP), believed to be due to cardiac mechanisms. Here we show that DS patients have peri-ictal respiratory dysfunction. One patient who had severe and prolonged postictal hypoventilation later died of SUDEP. Mice with an Scn1aR1407X/+ loss of function mutation died after spontaneous and heat-induced seizures due to central apnea followed by progressive bradycardia. Death could be prevented with mechanical ventilation after seizures induced by hyperthermia or maximal electroshock. Muscarinic receptor antagonists did not prevent bradycardia or death when given at doses selective for peripheral parasympathetic blockade, whereas apnea was prevented at doses known to be high enough to cross the blood brain barrier. Anoxia causes bradycardia due to a direct effect on the heart. We conclude that SUDEP in DS may result in some cases from primary central apnea, which can cause bradycardia presumably via an effect of hypoxemia on cardiac muscle.

Authors

YuJaung Kim, Eduardo Bravo, Caitlin K. Thirnbeck, Lori A. Smith-Mellecker, Se Hee Kim, Brian K. Gehlbach, Linda C. Laux, Douglas R. Nordli Jr., George B. Richerson

×

Abstract

Epithelial tumor cells undergo epithelial-to-mesenchymal transition (EMT) to gain metastatic activity. Competing endogenous RNAs (ceRNAs) have binding sites for a common set of microRNAs (miRs) and regulate each other’s expression by sponging miRs. Here, we address whether ceRNAs govern EMT–driven metastasis. High miR-181b levels were correlated with an improved prognosis in human lung adenocarcinomas, and metastatic tumor cell lines derived from a murine lung adenocarcinoma model in which metastasis is EMT–driven were enriched in miR-181b targets. The EMT–activating transcription factor ZEB1 relieved a strong basal repression of integrin-α1 (ITGA1), which in turn upregulated adenylyl cyclase 9 (ADCY9) by sponging miR181b. Ectopic expression of the ITGA1 3’ untranslated region reversed miR-181b–mediated metastasis suppression and increased the levels of ADCY9, which promoted ZEB1–driven tumor cell migration and metastasis. In human lung adenocarcinomas, ITGA1 and ADCY9 levels were positively correlated, and an ADCY9–activated transcriptomic signature had poor-prognostic value. Thus, ZEB1 initiates a miR-181b–regulated ceRNA network to drive metastasis.

Authors

Xiaochao Tan, Priyam Banerjee, Xin Liu, Jiang Yu, Don L. Gibbons, Ping Wu, Kenneth L. Scott, Lixia Diao, Xiaofeng Zheng, Jing Wang, Ali Jalali, Milind Suraokar, Junya Fujimoto, Carmen Behrens, Xiuping Liu, Chang-gong Liu, Chad J. Creighton, Ignacio I. Wistuba, Jonathan M. Kurie

×

Abstract

During epithelial-mesenchymal transition (EMT) epithelial cancer cells trans-differentiate into highly-motile, invasive, mesenchymal-like cells giving rise to disseminating tumor cells. Only few of these disseminated cells successfully metastasize. Immune cells and inflammation in the tumor microenvironment was shown to drive EMT, but few studies investigated the consequences of EMT on tumor immunosurveillance. In addition to initiating metastasis, we demonstrate that EMT confers increased susceptibility to NK cells and contributes, in part, to the inefficiency of the metastatic process. Depletion of NK cells allowed spontaneous metastasis without effecting primary tumor growth. EMT-induced modulation of E-cadherin and cell adhesion molecule 1 (CADM1) mediated increased susceptibility to NK cytotoxicity. Higher CADM1 expression correlates with improved patient survival in two lung and one breast adenocarcinoma patient cohorts and decreased metastasis. Our observation reveal a novel NK-mediated, metastasis-specific, immunosurveillance in lung cancer and presents a window of opportunity for the prevention of metastasis by boosting NK cell activity.

Authors

Peter J. Chockley, Jun Chen, Guoan Chen, David G. Beer, Theodore J. Standiford, Venkateshwar G. Keshamouni

×

Advertisement

January 2018

128 1 cover

January 2018 Issue

On the cover:
Mitochondrial ADHFE1 reprograms tumor metabolism

In this month’s issue of the JCI, Mishra et al. show that MYC-driven upregulation of the mitochondrial enzyme ADHFE1 leads to metabolic adaptations and dedifferentiation in breast tumors. The cover image depicts the role of mitochondrial ADHFE1 in D-2-hydroxyglutarate production, highlighting the contributions of the enzyme and oncometabolite to breast cancer progression.

×
Jci tm 2018 01

January 2018 JCI This Month

JCI This Month is a digest of the research, reviews, and other features published each month.

×

Review Series - More

Fibrosis

Series edited by Dean Sheppard

Fibrosis describes a maladaptive response to injury that results in pathogenic production of extracellular matrix, the formation of stiff scar tissue, and compromised organ function. Although it is most often associated with chronic liver conditions and progressive lung disease, fibrosis can affect any organ of the body. There are few treatment options for this progressive, often fatal condition, but as ongoing research identifies the molecular pathways that initiate and propagate fibrotic remodeling, therapeutic possibilities may become available. The reviews in this series discuss recent insights into genetic predisposition to fibrotic disorders, the origins of fibroblasts and myofibroblasts, scar tissue formation, organ regeneration, and more, revealing opportunities to interrupt or even reverse disease progression.

×